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Abstract

The hyperphagia, low sympathetic nervous system tone, and decreased circulating concen- Key Words
trations of bioactive thyroid hormones that are common to states of congenital leptin deficiency ~ » leptin

and hypoleptinemia following and during weight loss suggest that the major physiological » metabolism
function of leptin is to signal states of negative energy balance and decreased energy stores. » energy

In weight-reduced humans, these phenotypes together with pronounced hypometabolism and » obesity

increased parasympathetic nervous system tone create the optimal circumstance for weight
regain. Based on the weight loss induced by leptin administration in states of leptin deficiency
(obese) and observed similarity of phenotypes in states of congenital and dietary-induced states
of hypoleptinemia (reduced obese), it has been suggested that exogenous leptin could
potentially be useful in initiating, promoting, and sustaining weight reduction. However, the
responses of human beings to exogenous leptin administration are dependent not only on
extant energy stores but also on energy balance. Leptin administration to humans at usual
weight has little, if any, effect on body weight while leptin administration during weight loss
mitigates hunger, especially if given in supraphysiological doses during severe caloric restriction.
Leptin repletion is most effective following weight loss by dietary restriction. In this state of
weight stability but reduced energy stores, leptin at least partially reverses many of the
metabolic, autonomic, neuroendocrine, and behavioral adaptations that favor weight regain.
The major physiological function of leptin is to signal states of negative energy balance and
decreased energy stores. Leptin, and pharmacotherapies affecting leptin signaling pathways, is
likely to be most useful in sustaining weight loss.
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Background consumption, whereas the diabetes mouse produces satiety

factor, but cannot respond to it’ (Coleman 1973).
In the early 1980s, Ravussin et al. (1982) found no

Coleman (1973) reported that the parabiosis of obese (ob/ob,
later Lep”b) mice with control mice or with diabetes (db/db,

later Lepr™) mice resulted in hypophagia and starvation of
the ob/ob mice while not affecting the phenotypes of either
the control or db/db mice. With characteristic understate-
ment, Coleman wrote, ‘it is postulated that the obese mouse
is able to produce sufficient satiety factor to regulate its food

significant differences in 24 h or resting energy expendi-
ture (REE) between lean and obese individuals corrected
for body composition. Leibel & Hirsch (1984) and others
(Welle et al. 1984) found that maintenance of a reduced
body weight was accompanied by a decline in energy
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expenditure that was disproportionate to the changes in
body weight and composition, and resembled the hypo-
metabolic state of the ob/ob and db/db mice. The
observation of persistent hypometabolism following
weight loss while in a state of energy balance was
consistent with the so-called ‘lipostatic’ theory of body
weight maintenance, which posited a ‘signal’ reflecting
adipose tissue mass and affecting hypothalamic neural
circuitry regulating energy intake and expenditure.

The centricity of the hypothalamus in regulating this
lipostat was based initially on a work by Hetheringon &
Ranson in the early 1940s reporting that electrolytic
lesioning of the ventromedial hypothalamus (VMH) in
rats resulted in animals that defended higher levels of
body fat against both over-feeding and weight-reduction
(Hetherington & Ranson 1940, 1942). This work was
replicated by Anand & Brobeck (1951), who also noted
that rats and cats with lesions of the lateral hypothalamus
(LH) defended a lower body weight. Kennedy (1953)
suggested that ‘metabolites’ resulted in lipostasis of fat
depots by virtue of their effects in the hypothalamus, thus
energizing speculation as to the nature of these metabolic
markers of energy stores.

Mayer (1955) proposed that energy homeostasis
and body energy stores were largely regulated by the
interactions of ‘glucostatic’ and ‘lipostatic’ signals reflect-
ing, respectively, short-term and long-term energy stores
and balance. Based on their studies of energy metabolism in
rodents with lesions of the lateral or VMH, Keesey &
Corbett (1984) proposed a hypothalamically regulated
individualized ‘set-point’. This set-point was defined as
the particular body weight at which daily energy expendi-
ture is congruent with the value predicted by the best-fit
function describing the body mass—expenditure relation-
ship for that species and which could be perturbed upwards
by VMH lesions and downwards by LH lesions.

The identification of four genetically distinct but
phenotypically similar obesity syndromes in rodents (the
autosomal dominant A” and the recessive ob, db, fat, and tub
(Coleman 1978)) suggested that each of these mutations
subserved integrated pathways regulating energy output
and intake (Leibel 1990, Leibel et al. 1990) that were
possibly mediated by the satiety factor hypothesized by
Coleman (1973). Efforts to identify the ob and db gene
products then began in earnest (Leibel et al. 1993).

Coleman’s ‘satiety factor’ of course proved to be
leptin (Zhang et al. 1994). Leptin repletion of congenitally
leptin-deficient rodents and humans reversed the obesity
and many of the associated comorbid phenotypes
(Halaas et al. 1995, 1997, Barash et al. 1996, Montague
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et al. 1997, Farooqi et al. 1999). The effects of leptin on
energy homeostasis in humans without such mutations
are heterogeneous and are influenced by extant nutri-
tional stores (usual weight or reduced weight) and energy
balance (dynamic weight loss vs static weight mainten-
ance). More specifically, exogenous leptin administration
exerts effects in weight-stable and weight-reduced indi-
viduals, which mostly resembles those seen in states of
congenital leptin deficiency and at least partially reverses
many of the neuroendocrine, autonomic nervous system
(ANS), appetitive, and thermogenic changes that favor
weight regain following otherwise successful weight loss
(Leibel & Rosenbaum 2010). As discussed below, the
exogenous hormone is less effective in promoting weight
loss during dietary restriction and least effective in
initiating weight loss on its own. Thus, the effects of
exogenous leptin are affected by both energy stores (and
their perturbation from usual) and energy balance.

Body weight regulation

Studies by our group and others (Ravussin et al. 1985,
Weyer et al. 2000, Civitarese et al. 2007, Leibel &
Rosenbaum 2010, Myers et al. 2010) demonstrate that
the process of dynamic weight loss and the sustaining of
weight loss in a weight-stable state invoke similar but not
identical phenotypes involving energy expenditure
(declines that are disproportionate to changes in body
composition and weight and largely mediated by skeletal
muscle), the ANS (increased parasympathetic tone and
decreased sympathetic tone), neuroendocrine function
(decreased circulating concentrations of leptin and bio-
active thyroid hormones), and energy intake behavior
(delayed satiation, decreased perception of how much
food has been eaten, increased food reward value, and
decreased food restraint). These responses act coordinately
to promote regain of lost weight (see Table 1). In-patient
and out-patient studies of individuals successful at
sustaining weight loss for longer periods of time (>1
year) indicate that this metabolic opposition to keeping
weight off does not abate over time (McGuire et al. 1999,
Wing & Hill 2001, DelParigi et al. 2004, Wing & Phelan
2005, Rosenbaum et al. 2008a, Phelan et al. 2011,
Sumithran et al. 2011).

Skeletal muscle is the primary effector organ for the
disproportionate decline in energy expenditure that
occurs in subjects maintaining a reduced body weight.
The approximate 20% increase in skeletal muscle work
efficiency during low level exercise (pedaling a bicycle to
generate 10-25 W) that occurs following 10% weight loss
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Table 1 Differences in metabolic and behavioral responses to dynamic weight loss vs maintenance of reduced
weight (Leibel et al. 1995, Fontana et al. 2006, Martin et al. 2007, Redman et al. 2009, Leibel & Rosenbaum 2010)

Weight loss

Energy expenditure
maintenance
I NREE

Burn more fat at rest (| RER)

Neuroendocrine axes 11Ts, | 1Ts | ITSH

| | Leptin/FM by 40-50%°

1 Cortisol
1GH
Autonomics T1PNS and | [SNS
Energy intake | | Satiation
THunger?

| LREE ~300 kcal < reduced weight

Maintenance of reduced body weight

|REE

INREE?

Resting RER=pre-loss

lT3al lT4al ,LTSH

| Leptin/FM by ~10%?

Cortisol within the normal range
No change or small 1GH

TPNS and | SNS?

Less| | Satiation?®

LessTHunger®

REE, resting energy expenditure; NREE, non-resting energy expenditure; RER, respiratory exchange ratio; Ts, triiodothyronine;
T4, thyroxin; TSH, thyroid-stimulating hormone; GH, growth hormone; FM, fat mass; PNS, parasympathetic nervous system tone;

SNS, sympathetic nervous system tone.
At least partially reversed by leptin repletion.

by hypocaloric diet is of sufficient magnitude to account
for ~75% of the decline in non-resting energy expendi-
ture (NREE) (Rosenbaum et al. 2003, Goldsmith et al.
2010). The increased skeletal muscle chemomechanical
contractile efficiency is most probably due to an increase
in the expression of the more efficient molecular isotypes
for myosin heavy chain I (MHCI (MYH1)) and sarcoplasmic/
endoplasmic reticulum Ca™ "-dependent ATPase 2
(SERCA2 (ATP2A2)) in muscle (Baldwin et al. 2011).
These changes in muscle may be due, in part, to the
declines in sympathetic nervous system (SNS) tone and
circulating concentrations of bioactive thyroid hormones
discussed above (Li & Larsson 1997, Canepari et al. 1998,
Kardos et al. 2000, Simonides et al. 2001, Rosenbaum et al.
2003, Baldwin et al. 2011).

Systems regulating energy intake are also altered
during reduced weight maintenance. Dietary weight-
reduced and weight-stable subjects are hungry and show
decreased perception of the amount of food eaten and
delayed satiation (Kissileff et al. 2012) despite being in
a state of energy balance. Functional magnetic resonance
imaging studies of these subjects show increased activity
in response to seeing food (vs non-food items) in brain
areas related to the emotional and cognitive response to
food (predominantly the orbitofrontal cortex) and
decreased activity in brain areas related to emotional and
cognitive control (restraint) in response to food (predo-
minantly the prefrontal cortex), as well as decreased
activity in the hypothalamus (Rosenbaum et al. 2008b).

The potency of this regulatory physiology — com-
bining coordinate effects on both energy expenditure and
drive to eat — is apparent in weight loss studies. Clinically,
attempts to lose weight and keep it off are depressingly

unsuccessful. In most studies, weight loss achieved by
lifestyle intervention (Look AHEAD Research Group 2007,
Foster et al. 2010, Wadden et al. 2011), pharmacotherapy
(Franz et al. 2007, Ryan et al. 2010, Johansson et al. 2014),
or bariatric surgery (Sjostrom 2013) persists for an average
of ~6-8 months and is then usually followed by gradual
weight regain with substantial treatment-related variabil-
ity in the degree of weight loss (surgery>pharmaco-
therapy > lifestyle intervention) and the proportion of
the weight regained (surgery <pharmacotherapy <lifestyle
intervention).

Leptin provides a signal to the brain regarding the
‘status’ (both the mass and the stability) of somatic fat
stores. The intensity of neuronal signaling is proportional
to the ambient leptin concentration (Myers et al. 2008)
and, as discussed below, is also influenced by the
nutritional state of the organism. Signals originating in
leptin-sensitive brain regions influence neuroendocrine
functions, autonomic efferents, and food-related
behaviors (Korner et al. 1999, 2001, Korner & Aronne
2003). Leptin-mediated signals are central to a nexus of
neural circuitry that mediates what is physiologically
apparent as the regulation of body weight via the
integration of short- (e.g., gut-derived hormones and
glucose) and long- (e.g., leptin, insulin, and free fatty
acids) term signals related to energy homeostasis (Korner
et al. 1999, 2001, Schwartz et al. 2000, Korner & Aronne
2003). Among the most critical roles of this system is the
protection of the organism from reductions in fat mass
that could threaten reproductive capacity/fertility and/or
survival (Rosenbaum & Leibel 1998). Hence, leptin has a
strong functional bias in favor of the preservation of body
fat stores vs their reduction.
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Leptin administration before, during, and
after weight loss

Leptin administration before weight loss: state
of leptin sufficiency

Exogenous leptin administration to rodents fed ad libitum
in doses sufficient to raise circulating leptin concen-
trations by ~30-50% above baseline results in a transient
(<1 week) anorexiant effect and a persistently lower
weight and body fat content (Halaas et al. 1995, 1997,
Satoh et al. 1997, Boozer et al. 2001, Ravussin et al. 2014;
Table 2). Transgenic mice overexpressing leptin show
persistently lower food intake, as well as lower weight and
body fat content, than WT mice (Ogawa et al. 1999, Yura
et al. 2000). The persistence of reduced weight, with and
without persistence of decreased food intake, suggests that
hyperleptinemia in mice affects both energy intake and
expenditure.

The limited data regarding leptin dosing, circulating
concentrations of leptin, and effects of leptin adminis-
tration to human subjects at their usual body weight are
summarized in Table 2. Heymsfield et al. (1999) adminis-
tered leptin in doses ranging from O (placebo) to
0.30 mg/kg per day (producing blood levels up to 20-fold
above normal physiological range) to 54 lean and 73 obese
subjects for 4 weeks and to 47 obese subjects for 24 weeks.
Obese subjects were prescribed diets constituting an
~500 kcal/day caloric deficit, but dietary compliance
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was not assessed and there was no significant weight loss
in the placebo group. After 4 weeks of leptin treatment,
there was a significant correlation of leptin dose and
weight decrease across all subjects (though lean subjects
did not show a significant dose-response curve when
analyzed as a single group). However, overall weight
reduction in leptin-treated lean or obese subjects was not
different from placebo-treated subjects. In obese subjects
receiving exogenous leptin for a period of 24 weeks, there
was similarly a significant correlation between leptin dose
and weight loss; but there was significant weight loss
(2.3 kg more than placebo) only in subjects receiving the
highest doses of leptin (see Table 2). Those subjects
receiving higher doses of leptin (0.1 and 0.3 mg/kg per
day with circulating leptin concentrations ten- to 20-fold
above initial concentration) reported a small but statisti-
cally insignificant decrease in daily energy intake. The
high circulating leptin concentrations and low levels of
weight loss in obese subjects following exogenous leptin
administration have been interpreted to indicate that
obese individuals are ‘leptin resistant’ (Friedman & Halaas
1998, Kaira 2001, Lee et al. 2001, Scarpace & Zhang 2007).
However, it was obese, and not lean, individuals who
showed a dose-response relationship of weight decrease
(modest as it was) to leptin.

A more recent study by Moon et al. (2011) has
examined the effects of 16 weeks of leptin administration
(10 mg s.c. bid) to 71 weight-stable (followed for at least

Table 2 Effects of leptin administration to subjects at usual weight

Leptin Mean (s.0.) leptin
Dose concentration in
References Subjects Type Duration  (administered s.c.) plasma (ng/ml)? Mean (s.0.) leptin effect
Moon et al. Outpatient obese r-met hu 16 weeks Placebo 36.8 (28.3) BMI: —0.5 (0.8) kg/m?
(2011) subjects with type 2 leptin 10 mg bid 987.1 (343.5) BMI: —0.7 (0.7) kg/m2
diabetes controlled
by diet
Heymsfield Outpatient obese r-met hu 24 weeks Placebo 25.0 (39.6) —1.0(3.8) kg weight loss
et al. (1999) subjects leptin 0.01 mg/kg per day 28.3 (20.2) —0.7 (4.6) kg weight loss
0.03 mg/kg per day 115.5 (99.9) —1.4(4.1) kg weight loss
0.10 mg/kg per day 271.7 (322.4) —2.1(5.0) kg weight loss
0.30 mg/kg per day 480.3 (522.0) —3.3(6.7) kg weight loss
Mittendorfer  Outpatient obese r-met hu 2 weeks Placebo 25 (11) No significant change in
etal. (2011) subjects with newly leptin 15 mg bid 76 (42) body composition or
diagnosed type 2 40 mg bid 5024 (1115) glucose homeostasis
diabetes untreated
Mackintosh & In-patient never-obese  r-met hu 1 week 0.3 mg/kg per day Not reported (see No significant effect on
Hirsch (2001)  subjects leptin Heymsfield et al.  weight, resting energy

(1999) for data
on similar dose)

expenditure, or ANS
tone

2Leptin levels are expressed as mean (s.0.) maximum levels detected at the end of the study period, while subjects were receiving leptin or placebo.
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4 weeks before enrollment) obese subjects with type 2
diabetes managed by diet alone. Peak plasma leptin
concentrations were raised to ~25 times the level of
subjects receiving placebo; but no significant changes in
body weight were noted in either leptin-treated or placebo
groups. Similarly, Mittendorfer et al. (2011) found no
effects of 14 days of high (40 mg s.c. bid) or lower (15 mg
s.c. bid) dose leptin on either body composition or glucose
homeostasis in 18 subjects who were newly diagnosed
with type 2 diabetes and not receiving any anti-diabetic
medications. Mackintosh and Hirsch reported no effects of
high-dose (0.3 mg/kg per day s.c.) leptin administration —
the highest dose used by Heymsfield et al. (1999) — on ANS
tone in weight-stable lean subjects. This finding is in sharp
contrast to the potent effects of low-dose leptin ‘repletion’
to decrease SNS tone in weight-reduced subjects
(Rosenbaum et al. 2005). Taken together, these studies
indicate that leptin administration to obese or lean
humans at their usual body weights has little effect on
energy homeostasis. In this sense, both lean and obese
subjects at their usual body weight are ‘resistant’ to the
effects of leptin on energy balance. As discussed below, to
use the term ‘resistant’ in this context misrepresents the
biology of leptin in the regulation of body fat stores.

Leptin administration during and following weight loss:
states of leptin depletion

The hypometabolic/hyperphagic state that accompanies
and follows weight loss is similar to that observed in
individuals with congenital leptin deficiency (Farooqi
et al. 1999, 2002, 2003, Ozata et al. 1999; Tables 3 and 4).
Data regarding leptin dosing, circulating concentrations
of leptin, and effects of leptin administration to subjects
receiving leptin during dynamic weight loss are sum-
marized in Table 3. During dynamic weight loss, circulat-
ing concentrations of leptin are significantly reduced
relative to fat mass (Rosenbaum et al. 1997), primarily
due to decreased leptin gene expression in adipose tissue
(Siklova-Vitkova et al. 2012), as well as increased leptin
clearance rates (particularly in males) (Chan et al. 2008).
Thus, leptin gene expression and circulating leptin
concentrations reflect not only energy stores (adipose
tissue mass) but also the status of energy balance.
Treatment of food-restricted mice with leptin prevents
the decrease in energy expenditure that normally occurs
during reduced energy intake (Ahima et al. 1996, Halaas
et al. 1997). Teleologically, this acute decline constitutes
a ‘signal’ regarding imminent threats to somatic body
energy stores (Ahima et al. 1996) and, therefore,
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reproductive capacity and survival (Rosenbaum & Leibel
1999, Rosenbaum et al. 2005, 2008b). Compared with
subjects at stable reduced body weight, circulating leptin
concentrations are lower while changes in metabolic,
behavioral, autonomic, and neuroendocrine systems
favoring weight regain are more activated in calorie-
restricted individuals losing weight. However, leptin
administration during caloric restriction produces a less
complete ‘reversal’ of the metabolic, behavioral, neuro-
endocrine, and autonomic effects of weight loss than that
observed in subjects stable at a reduced body weight.

In subjects ingesting a diet restricted by 500 kcal/day
below usual intake (Fogteloo et al. (2003) reported that
10 mg leptin administered subcutaneously daily (n=15)
or twice a day (n=6) for 12 weeks promoted significantly
greater weight loss than placebo (n=9). However, they
found no significant between-group differences in energy
intake or expenditure (see Table 3). These results differ
from other studies using a similar design. In an out-patient
study by Shetty et al. (2011), leptin (10 mg s.c. daily) was
administered to 18 obese or overweight subjects while
placebo was administered to six similar subjects. All
subjects were prescribed a hypocaloric diet designed to
reduce energy intake by 500 kcal/day for 6 months. There
were no significant differences between placebo and
leptin-treated subjects in weight change or neuroendo-
crine function (IGF1, IGFBP1, IGFBP3, or bioactive thyroid
hormones). Similarly, neither administration of s.c. leptin
at doses of 10-20 mg/day (resulting in circulating leptin
concentrations that are ~3-5 times the pre-weight loss
levels) nor administration of pegylated leptin at a dose of
20 mg/week (Hukshorn et al. 2000, Zelissen et al. 2005)
(resulting in leptin concentrations similar to baseline
concentrations) induced significant changes in body
weight changes, resting metabolic rate, or hunger
compared with placebo in subjects prescribed a
500 kcal/day caloric deficit. However, with more severe
caloric restriction of a very low energy diet (VLED, total
intake of 500 kcal/day) and the same dose of leptin,
Westerterp-Plantenga et al. (2001) found a significant
decline in hunger without changes in body composition,
weight, or energy expenditure over 6 weeks. When the
dose of pegylated leptin was increased to 80 mg/week
(Hukshorn et al. 2003, Lejeune et al. 2003), the VLED
leptin-treated subjects lost significantly more weight and
exhibited significantly more dietary restraint (measured
by standardized questionnaires) than controls. However,
there were no significant between-group differences in the
composition of lost weight (absolute and relative amounts
of fat or fat-free mass (FFM)), REE, or respiratory quotient.
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Taken together, these data suggest that the effects of
leptin ‘repletion’ in calorically restricted subjects are
primarily a modest reduction in energy intake and perhaps
better compliance with caloric restriction. If leptin is
administered in higher doses (achieving blood levels up to
100-fold above baseline) and the diet is more restricted
(500 vs 500 kcal/day caloric deficit), there appears to be an
increased weight loss, again mostly due to decreased
energy intake (see Table 3). As discussed below, the efficacy
of leptin in diminishing the hyperphagia and hypometa-
bolism that occur during weight loss is much less than the
potent effects of leptin repletion observed in subjects
attempting to sustain a reduced weight.

Data regarding leptin dosing, circulating concen-
trations of leptin, and effects of leptin administration to
subjects receiving leptin during maintenance of reduced
body weights are summarized in Table 4. There are fewer
studies examining the effects of leptin administration/
repletion following weight loss, but exogenous leptin
appears to be substantially more potent when it is
administered to individuals who are relatively hypolepti-
nemic by virtue of maintaining a 10% or greater reduction
in body weight. The doses required to achieve these effects
are low, being sufficient only to restore circulating leptin
concentrations to their pre-weight loss levels. Leptin
repletion under these circumstances results in further
body weight reduction and largely reverses the physio-
logical and behavioral responses to weight loss — including
increased skeletal muscle work efficiency, circulating
concentrations of triilodothyronine and thyroxine,
SNS tone, feeding behavior, and brain fMRI patterns
(Rosenbaum & Leibel 1998, Rosenbaum et al. 2005,
2008b; see Table 4).

In a longer-term study of subjects sustaining weight
loss, Brinkoetter et al. (2011) and Sienkiewicz et al. (2011)
examined the effects of 9 months of exogenous leptin
administration (0.04-0.12 mg/kg per day to hypoleptine-
mic (as a result of reduced fat mass) female athletes with
hypothalamic amenorrhea). Though weight and fat mass
declined throughout the period of leptin administration,
normal hypothalamic—pituitary-gonadal function was
restored (see Table 4). Similarly, leptin administration to
individuals with moderate to severe hypoleptinemia by
virtue of congenital or HAART-induced lipodystrophy also
results in weight loss (see Table 4). The potent effects of
both short- and long-term leptin repletion (i.e. to within
the normal pre-weight loss range) to ‘reverse’ some of the
metabolic, behavioral, and neuroendocrine consequences
of weight loss if given following weight reduction as
opposed to losing weight or at their usual weight suggests
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that leptin ‘repletion’ and/or leptin-sensitizing agents may
be helpful in maintaining a reduced body weight
(Ravussin et al. 2009).

Implications for the role of leptin in
human energy homeostasis

As schematized in Fig. 1, biological responses to hormones
and metabolites are not necessarily linear. Symmetric,
essentially linear responses are illustrated by testosterone,
the exogenous administration of which results in dose-
dependent increases in anabolism. Asymmetric physi-
ology is illustrated by the tachycardia, diaphoresis,

Role of leptin in molecular pathogenesis of obesity

>

Blunted action
(Restraint of fat)

Catabolic response

v

os]
>

Elevated threshold
(Protection of fat)

Obese

Lean

Anabolic response

v

(Leptin)

Figure 1

Two models of leptin endocrine action in the context of obesity, which
illustrate possible answers to the question as to whether leptin’s primary
homeostatic role is to restrain adiposity by provoking catabolic responses
(reduced energy intake and increased energy expenditure), or to protect
body fat in service of reproductive integrity and survival in adverse
environmental circumstances? This distinction is critical to integrating the
large literature on the biology of leptin and to formulating therapeutic
approaches to obesity. 1A depicts a classical linear ‘symmetrical’ catabolic
endocrine response (e.g., to thyroid hormone), in which leptin sensitivity is
depicted as congenitally reduced in individuals predisposed to obesity.

1B depicts a very different model in which leptin’s primary role is to
provoke anabolic responses when its circulating concentration reaches a
critical minimum (‘threshold’), which is determined by genetic, develop-
mental, and intercurrent metabolic circumstances. The threshold is higher
in individuals predisposed to obesity; hence their acquisition and defense
of a higher level of body fat. As discussed in the text, physiological and
pharmacological studies support the 1B model. Of note is that the leptin
concentration ‘thresholds’ for specific physiological processes

(e.g., gonadal axis, insulin homeostasis, immune function, and energy
intake/expenditure) are not identical, and brain regions and cells, somatic
cell types, and signaling mechanisms (e.g., JAK-STAT) also differ

(Myers et al. 2008, Villanueva & Myers 2008).
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confusion, and poly-hormonal response that can be
induced by a 30-40 mg/dl decline in blood glucose level
vs the lack of symptomatology associated with a com-
parable elevation in glucose level in an otherwise healthy
individual.

As indicated by the varied effects of exogenous leptin
administration depending upon both the status of energy
stores and energy balance, physiological/behavioral
responses to ambient leptin are highly asymmetrical.
Changes in energy expenditure and intake in relatively
hyperleptinemic states due to either obesity or exogenous
administration are minimal. In this sense, both lean and
obese subjects at their ‘usual’ weight are ‘resistant’ to the
effects of leptin on energy homeostasis. On the other
hand, reductions in ambient leptin - signaling a deficiency
of somatic energy stores and/or negative energy balance —
are met with metabolic and behavioral responses designed
to protect those stores. These observations have been
variously formulated as ‘set point’ and ‘settling point’
models of the molecular physiology of the regulation of
body weight (Speakman et al. 2011).

The asymmetric physiological responses to leptin
described above (weak for increases and strong for
decreases) have led us (Rosenbaum & Leibel 1999, Myers
et al. 2010), and others (Ahima et al. 1996, 1999),
to propose a ‘threshold model’ for leptin signaling (see
Fig. 1). This model posits a threshold for leptin (and
possibly other centrally active hormones such as insulin,
ghrelin, and Peptide YY) action that is determined by
genetics, structural development, and ambient metab-
olites. The amount of leptin required to signal through
relevant central sites of action is determined by the
aggregate effects of these components on the sensitivity
of the molecular circuitry. Individuals with higher
thresholds require higher ambient/CNS leptin levels
(hence more somatic fat) to activate the circuitry resulting
in reduced energy intake and increased energy expendi-
ture. Ambient levels below this concentration trigger
hunger and energy conservation in response to centrally
perceived critical diminution of body fat. Elevations above
the threshold provoke little metabolic or behavioral
response. The mechanism is designed to conserve body
fat, as in evolutionary terms loss of fat has been a constant
threat to fertility and survival. The threshold determines
the minimum level of body fat tolerated by the individual.
Below this level, ‘reported’ as reduced circulating leptin
concentration, homeostatic responses are invoked to
restore the fat. In obese individuals, the threshold is set
higher than that in lean individuals. The responses of both
lean and obese individuals to reductions below these
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different thresholds are similar if not identical. The
threshold is not lowered by chronic maintenance of a
reduced body weight (Leibel & Hirsch 1984, Rosenbaum
et al. 2008a), but may be raised - in mice — by chronic
maintenance of an elevated body weight (Ravussin et al.
2011). This effect does not appear to be conveyed by
elevations of leptin per se as mice do not become obese
following cessation of a chronic (16 weeks) leptin infusion
(Ravussin et al. 2014). The model predicts that even large
doses of leptin would not have much impact on body
weight in the leptin-sufficient individual (usual weight),
whereas low ‘replacement’ doses could normalize energy
expenditure and food intake in weight-reduced individ-
uals whose circulating leptin concentration is below their
threshold concentration.

The extent to which a threshold model for leptin
action is applicable to leptin effects on other systems
(immunological, bone metabolism, glucose homeostasis,
etc.) is yet to be established. It should be noted that this
threshold model does not stipulate that all physiological
and behavioral systems will necessarily have the same
threshold concentration, or even have a leptin threshold
(Chan et al. 2006). For example, in humans, leptin-
reversible infertility occurs only at levels of body fatness
that are well below the 10% or greater weight loss, which is
sufficient or produces a hypometabolic hyperphagic state
(Lev-Ran 1974, Frisch 1980, Chou et al. 2011). It should
also be clear that leptin does not reverse all of the
metabolic and behavioral adaptations that characterize
the weight-reduced state. Leptin repletion following
weight loss reduces most, but not all, of the hypometabo-
lism and hyperphagia. It does not affect the decline in
thyroid-stimulating hormone (TSH) or the increase in
parasympathetic nervous system tone, nor does it reverse
all of the changes in muscle gene expression and
contractile efficiency (Rosenbaum et al. 2005, Baldwin
etal. 2011, Kissileff et al. 2012, Hinkle et al. 2013). Further
evidence that leptin is not the sole mediator of the
metabolic responses to weight loss comes from studies of
congenitally leptin-resistant fa/fa rats that demonstrate
similar adaptations to caloric restriction in arcuate nucleus
expression of NPY, AGRP, and CART (CARTPT), as those
observed in WT mice (Chiba et al. 2009).

Based on observations that both lean and obese
humans at usual body weight are functionally ‘resistant’
to the effects of leptin on energy homeostasis, it is
probably more accurate to indicate that the biology is
simply not designed to respond very effectively to what
would constitute hyperleptinemia for a given individual
(see Table 2). Such asymmetry of responses would be
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consistent with the evolutionary circumstances in which
this regulatory system arose, defense against caloric
insufficiency being a much more frequent and severe
problem than dealing with presumably rare access to
excessive food supplies. Leptin administration during
weight loss in humans, especially in states of severe caloric
restriction and supraphysiological doses of leptin, will
decrease appetite, but there is no substantive evidence that
it will affect energy expenditure or neuroendocrine
function in humans (unlike rodent studies in which leptin
administration during starvation blunts the activation of
the hypothalamic—pituitary—adrenal (HPA) axis as well as
the reductions in hypothalamic expression of POMC and
CART (Legradi et al. 1997, Ahima et al. 2000)) (see Table 3).
Following moderate weight loss, leptin repletion at doses
designed to restore circulating leptin concentrations to
their pre-weight loss range will reverse many, but not all,
of the metabolic consequences of weight loss. Following
more severe reductions in body weight leading to
profound hypoleptinemia, as in lipodystrophy and hypo-
thalamic amenorrhea, leptin repletion still promotes
weight loss and increases hypothalamic—pituitary-thyroid
(HPT) and hypothalamic-pituitary-gonadal (HPG) axis
activity (Mantzoros et al. 2011) (see Table 4). In a study of
leptin administration to bariatric surgery patients, Korner
etal. (2013) noted a non-significant increase in weight loss
following leptin repletion (n=14) vs controls (n=13),
again indicating the contextual nature of responses to
exogenous leptin.

A key point is that the response of systems regulating
energy homeostasis to exogenous leptin is influenced
by the metabolic status of energy balance as well as the
magnitude of energy stores (Mantzoros et al. 2011). Hence,
the subtle differences in metabolic and behavioral
responses to leptin of individuals who are actively losing
weight and those who are weight stable at that same
reduced weight do exist. In addition, though it seems that
metabolic and behavioral opposition to circulating leptin
concentrations below an individualized threshold is
invoked whether leptin levels are low due to negative
energy balance or simply due to loss of fat mass, the same
cannot be said for leptin repletion. The effects of leptin
repletion during energy restriction are very much con-
strained compared with the effect observed during
reduced-weight maintenance.

The mechanism(s) underlying the effects of both
energy stores and energy balance on leptin responsiveness
is unclear. Specifically, why is responsiveness to exogen-
ous leptin in low leptin states accompanying dynamic
weight loss less than that observed in the less severe
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hypoleptinemia of subjects maintaining a reduced weight
or more severe hypoleptinemia of subjects with exercise-
induced fat loss or lipodystrophy? The observation that
the co-administration of the nominal leptin-sensitizing
agent, amylin, with exogenous leptin synergistically
enhanced weight loss in out-patients prescribed a 20%
calorically restricted diet (Ravussin et al. 2009, Trevaskis
et al. 2010) suggests that there is a primary decline in
leptin sensitivity during caloric restriction. In addition,
during caloric restriction, leptin clearance is increased
(Chan et al. 2008), and it is also possible that alterations
in leptin transport into the brain or inhibition of leptin
action by molecules such as SOCS3, PTP1B, or SH2 may
diminish sensitivity to exogenous leptin during caloric
restriction (Flier 1998, Ahima et al. 1999, Morrison 2009),
or in euleptinemic or hyperleptinemic states (Morrison
2009). Teleologically, such reductions in sensitivity to
leptin would prevent life-threatening anorexia in circum-
stances of reduced availability of food. Ahima et al. (1999,
2000) also suggested that the observed lack of efficacy of
leptin administration during negative energy balance or at
usual weight compared with following weight loss may
reflect downstream changes in the leptin signaling
pathway that is mediated by other molecules, such as
glucocorticoids or insulin, which are altered as
a consequence of energy stores or balance.

Concluding remarks

Based on the predicted consequences of the evolutionary
pressures discussed above, as well as the asymmetry of
responsiveness to exogenous leptin, the major function of
leptin in human physiology is to signal inadequate energy
stores or balance rather than an overabundance of fat.
These findings have important implications for the
potential role of exogenous leptin in the treatment of
obesity. Though there is substantial inter-individual
variation in response, it seems clear that leptin adminis-
tration is not likely to be very effective in inducing weight
loss as a stand-alone intervention. The limited efficacy of
high-dose leptin in promoting weight loss in subjects
during caloric restriction suggests that leptin could
potentially assist in either prolonging the period of weight
loss or increasing the amount of weight lost within a
certain period of time, if given along with a ‘leptin-
sensitizing agent’ that might overcome the effects of
negative energy balance on leptin responsiveness. Leptin
is most likely to be most effective, however, as a weight
maintenance therapy in individuals who have previously
lost weight. Repletion of leptin to pre-weight loss levels
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following weight loss results in potent reduction of the
metabolic and behavioral opposition to sustained weight
loss — by signaling nominal adequacy of energy stores to
CNS tracts regulating energy homeostasis. These same
contextual differences in response to leptin may well
pertain to the pharmacological agents designed to assist in
the medical management of obesity; their greatest efficacy
may be in the weight-reduced state (Lehmann et al. 2014,
SkowronsKi et al. 2014).
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